Decision Tree Predictor

πŸ€– AutoML Model Information

πŸ† Best Model: Random Forest

🎯 Target: loan_approved

πŸ“Š Classes: No, Yes

βœ… Best Accuracy: 1.0000

πŸ“ˆ Training Samples: 100

⏱️ Training Time: 352.58s

πŸ”’ Numeric Features: age, annual_income, academic_score, credit_score, co_applicant_income

🏷️ Categorical Features: education_level, student_type, program_type, college_city, is_listed_university, has_collateral, co_applicant

πŸ’‘ Note: All fields are optional. Missing values will be handled automatically by the AutoML pipeline.

πŸ“‹ Model Comparison Results
ModelAccuracyAUCF1-ScoreCV ScoreTime (s)
Random ForestπŸ†1.00001.00001.00000.9375Β±0.000293.29
Gradient Boosting0.90001.00000.50000.9250Β±0.07356.29
Decision Tree0.85000.92110.40000.9125Β±0.0500.87
Logistic Regression0.85001.00000.40000.9625Β±0.0310.55

Enter Values for Prediction